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The dearomatization of arenes is recognized as a chemical
transformation of fundamental importance for organic chemists
since it allows efficient access to alicyclic frameworks present in
many biologically active compounds.1,2 In this context, complex-
ation of the aromatic ring with stoichiometric amounts of transition
metals,3 oxidation of phenols,4 and reduction using metals in
solution5,6 have been widely investigated. Despite the importance
of these methods, the required use of stoichiometric amounts of
metals or reactive reagents and/or the additional complexation/
decomplexation steps needed to release the desired product remain
a limitation. Therefore, the development of new dearomatization
methods that operate under catalytic conditions and with high
stereocontrol would be extremely valuable for the synthetic organic
community.7 Herein, we present the first asymmetric transition-
metal-catalyzed8 dearomatization to form an all-carbon quaternary
stereocenter.9

Our initial idea is depicted in Scheme 1. As shown, the
deprotonation of aniline I would be expected to increase the electron
density in the adjacent aromatic ring, allowing the intramolecular
electrophilic aromatic substitution-type reaction with the palladium
(II) center to generate 3aH-indole derivative III.

To ascertain the feasibility of this hypothesis, we started our
investigations with the transformation of 1a into 6a-phenyl-6aH-
benzo[a]carbazole 2a using various Pd sources and phosphine
ligands.10 After some initial experimentation, we found that
compound 2a was produced in 98% yield when 1a was treated
with 3 mol % Pd(OAc)2 and 4.5 mol % SPhos in dioxane at 80 °C
using LiOt-Bu as a base.11

With these results in hand, we next focused our efforts on the
use of different chiral ligands to effect an asymmetric version of
this transformation. The use of bidentate ligands resulted only in
the recovery of starting material 1a (Table 1, entries 1 and 2).12

Better results were obtained, however, when monodentate ligands
were used (Table 1, entries 4-6). Indeed, when MOP (L4) was
employed, compound 2a was obtained in 90% yield, albeit in only
21% ee. The enantioselectivity could be increased to 90% ee by
using KenPhos13 (L5) as the ligand (Table 1, entry 6). Further
optimization of these conditions led to the formation of benzocar-
bazole 2a in 96% yield and 93% ee when 1a was treated with
Pd(dba)2 and L5 in THF (0.1 M) in the presence of LiOt-Bu as a
base (Table 1, entry 13).

Encouraged by these initial findings, we next examined the scope
of this transformation. First, we evaluated the effect of different
substituents on the benzene ring. As shown in Table 2, both
electron-donating (entry 2) and electron-withdrawing substituents
(entries 3 and 4) formed the corresponding benzocarbazole deriva-
tives 2a-f in good yields and enantioselectivities. Under these
reaction conditions, it was possible to obtain chlorine-substituted
compound 2e in 65% isolated yield and 89% ee. The efficacy of
this method decreased, however, with the more sterically hindered
ortho-substituted benzene derivatives. Thus, the reaction of o-Me-
substituted 1f provided incomplete conversion to the corresponding
benzocarbazole 2f in 62% yield and 66% ee.

Following these experiments, we focused our attention on
substitution on the naphthalene ring. Our initial protocol using L5
as a ligand provided the desired products in good yield but moderate
enantioselectivity. After careful investigation, we found that the
use of the bulkier ligand L6, in which one methyl group on the

Scheme 1. General Scheme for the Pd-Catalyzed Dearomatization

Table 1. Screening of Dearomatization Conditionsa

a Reaction conditions: Aniline (0.1 mmol) in solvent (1 mL). b GC
yields using dodecane as an internal standard. c The ee values were
determined by HPLC (see the Supporting Information). The absolute
configuration was determined by single-crystal X-ray diffraction (see the
text and Supporting Information).
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nitrogen had been replaced by an i-Pr substituent, gave better
results.14 Indeed, when compounds 3a-d were exposed to the
standard conditions using L6 in lieu of L5, benzocarbazoles 4a-d
were obtained in high yield and enantioselectivity (Table 3, entries
1-4). Again, the use of a more sterically hindered substrate resulted
in a diminished ee (Table 3, entry 5). Compound 4c proved to be
crystalline, allowing the determination of the absolute configuration
by means of X-ray crystallographic analysis.15

The synthetic potential of these benzocarbazole derivatives is
shown in Scheme 2. As depicted, the 1,2-addition of MeLi gave
rise to the corresponding compound in 80% isolated yield as a 9:1
mixture of diastereomers (based on GC and GC-MS analysis of

the crude reaction mixture), which were separated by column
chromatography.16 Protection of the secondary amine provided the
enantiomerically pure crystalline compound 5 after crystallization.

In conclusion, we have reported the first asymmetric palladium-
catalyzed intramolecular dearomatization reaction. The application
of this new method to naphthalene derivatives led us to obtain
benzocarbazole derivatives in high yields and enantioselectivities,
making this method suitable for synthetic purposes. Further
investigations into the mechanism of this reaction as well as
extensions of the substrate scope are ongoing in our laboratories.
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Table 2. Influence of Substitution on the Benzene Ringa

a Reaction conditions: Aniline (0.5 mmol), Pd(dba)2 (3 mol %), and
L5 (4.5 mol %) in THF (5 mL). b Isolated yields are averages of two
runs. The ee values were determined by HPLC (see the Supporting
Information). c Incomplete conversion of the starting material.

Table 3. Influence of Naphthalene Substitutiona

entry R T (°C) yield (%)b ee (%)c

1 Me (3a) 90 83 92 (R)
2 n-Pr (3b) 90 79 88 (R)
3 4-ClC6H4 (3c) 70 89 93 (S)
4 2-(MeO)C6H4 (3d) 90 93 90 (R)
5 2-MeC6H4 (3e) 100 64d 50 (S)

a Reaction conditions: Aniline (0.5 mmol), Pd(dba)2 (3 mol %), and
L6 (4.5 mol %) in THF (5 mL). b Isolated yields are averages of two
runs. c The ee values were determined by HPLC (see the Supporting
Information). d Incomplete conversion of the starting material.

Scheme 2. Further Functionalization of Derivative 4a
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